Exam Seat No:\_\_\_\_\_

# C.U.SHAH UNIVERSITY Summer Examination-2016

Subject Name: Theory of Computation Subject Code: 4TE06TOC1 Branch: B.Tech (CE)

Semester: 6 Date: 17/05/2016 Time: 2:30 To 5:30 Marks: 70 Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

### Q.1 Attempt the following questions:

- (a) Which of the following is true? i) (01)\*0 = 0(10)\*ii) (0+1)\*0(0+1)\*1(0+1) = (0+1)\*01(0+1)\*iii) (0+1)\*01(0+1)\*+1\*0\* = (0+1)\*iv) All of the mentioned
- (b) A language is regular if and only if
  i) accepted by DFA
  ii) accepted by PDA
  iii) accepted by LBA
  - iv) accepted by Turing machine
- (c) Give regular expression for the language  $L = \{w \in \{0, 1\}^* | w \text{ has no pair of consecutive zeros}\}.$
- (d) Define ambiguous grammar.
- (e) What is left recursion?
- (f) CFLs are not closed under
  - i) Union
  - ii) Concatenation
  - iii) Intersection
  - iv) Homomorphism
- (g) If  $\sum = \{a, b\}$ , then the number of possible different strings with length exactly n are
  - i)  $2^{n-1}$
  - ii)  $2^n$
  - iii)  $2^{n} 1$
  - iv) None of the above
- (h) Define regular expression.
- (i) Write the Chomsky Hierarchy of languages.
- (j) Describe the language corresponding to given RE: (1+01)\*(0+01)\*
- (k) Give the recursive definition of L\*.

### Page 1 || 3



(14)

- (l) Consider the regular language  $L = (111 + 1111)^*$ . The minimum number of states in any DFA accepting the language is
  - i) 3
  - ii) 5
  - iii)8
  - iv)9
- (m) Which of the following in true for the language {a<sup>P</sup> | P is a prime}?
  i) It is not accepted by a Turning Machine
  - ii) It is regular but not context-free
  - iii) It is context-free but not regular
  - iv) It is neither regular nor context-free, but accepted by a Turing machine
- (n) The C language is :
  - i) A context free language
  - ii) A context sensitive language
  - iii) A regular language
  - iv) Parsable fully only by a Turing machine

## Attempt any four questions from Q-2 to Q-8

| Q-2 |     | Attempt all questions                                                                    |      |
|-----|-----|------------------------------------------------------------------------------------------|------|
|     | (a) | What is meant by "one to one" and "onto" function? Check whether function                | (04) |
|     |     | f: $\mathbf{R} \rightarrow \mathbf{R}^+$ , f(x) = x <sup>2</sup> is one to one and onto. |      |
|     | (b) | Prove that Dangling-Else grammar is ambiguous. Also give an unambiguous                  | (07) |
|     |     | grammar for the same.                                                                    |      |
|     | (c) | Prove that $\sqrt{2}$ is Irrational by method of contradiction.                          | (03) |
| Q-3 |     | Attempt all questions                                                                    |      |
| -   | (a) | Draw an FA recognizing the following language:                                           | (04) |
|     |     | (i) The language of all the strings in which number of 1's is even.                      |      |
|     |     | (ii) The language of all strings containing both 11 and 010 as substrings.               |      |
|     | (b) | Given the Context-free grammar G, find a CFG G' in Chomsky normal form                   | (07) |
|     |     | generating $L(G) - \{^{\wedge}\}$                                                        |      |
|     |     | $S \rightarrow AACD$                                                                     |      |
|     |     | $A \rightarrow aAb \mid ^{\wedge}$                                                       |      |
|     |     | $C \rightarrow aC \mid a$                                                                |      |
|     |     | $D \rightarrow aDa   bDb   ^{-1}$                                                        |      |
|     | (c) | Prove that a language $L = \{ 0^{i}1^{i}   i \ge 0 \}$ is not regular.                   | (03) |
| Q-4 |     | Attempt all questions                                                                    | (14) |
|     | (a) | For regular expression $(0*10 + 1*0) (01)^*$ , draw an NFA-^ recognizing the             |      |
|     |     | corresponding language. Convert NFA- <sup>^</sup> to NFA and to FA.                      |      |
|     | (b) |                                                                                          |      |
|     |     | (i) $\{a^{i}b^{j}c^{k}   k \ge 0, j=i \text{ or } j=k\}$                                 |      |
|     |     | (ii) $\{w \mid w \text{ starts and ends with the same symbol}\}$                         |      |
| Q-5 |     | Attempt all questions                                                                    | (14) |
|     |     | Page 2    3                                                                              |      |



- (a) Design and draw a deterministic PDA (DPDA) to accept strings with more a's than b's. Trace it for the string "aabab".
- (b) Draw Finite Automata (FA) for following languages:  $L1 = \{x \in \{0,1\}^* | 11 \text{ is not a substring of } x\}$  and  $L2 = \{x \in \{0,1\}^* | x \text{ ends} \}$

with 01}. Find FA accepting the language (i) L1 - L2 (ii) L1 U L2

#### Q-6 Attempt all questions (14)Design a DPDA accepting Balanced Strings of Brackets. The grammar for the (a) language is as follows: $S \rightarrow SS | [S] | \{S\} | ^{\land}$ (b) Design a Turing Machine which works as a numerical Comparator. Q-7 Attempt all questions (14)(a) Draw a transition diagram for a TM accepting palindromes over {a,b} (b) Explain Unbounded Minimization and µ-Recursive Functions. Q-8 Attempt all questions (14) Explain Arden's Theorem. Using Arden's Theorem find the regular (a) expression corresponding to the finite automata given in the figure. (\* $S_3$ is a final State)



(b) Explain Universal Turing Machine and Halting Problem.

